Robust estimators of volatility in the Black-Scholes option picing model

Main Article Content

Justyna Majewska


Keywords : robust estimators of volatility, t-estimator, A-estimator, Black-Scholes option pricing model, standard deviation, median absolute deviation, outliers, influence function, breakdown point, maximum bias
Abstract
Correct estimation of volatility of financial asset is the most important stage in option pricing. Financial time series have two features which prevent use of conventional estimators of volatilities such as outliers and leptokurtotic tails of data distributions. In this paper, we presented robust estimators of volatility testimators and A-estimators, which are required to achieve stable and accurate results. We made comparative analysis of option’s values on index WIG20 in Warsaw Stock Exchange taking into consideration following volatility parameters: standard deviation, median absolute deviation, t-estimator and A-estimator. The values of options were estimated by generally known the Black-Scholes option pricing model. Besides, we presented three most popular robustness measures and powerful tools of robust statistic for outlying observations identification

Article Details

How to Cite
Majewska, J. (2006). Robust estimators of volatility in the Black-Scholes option picing model. Zeszyty Naukowe SGGW - Ekonomika I Organizacja Gospodarki Żywnościowej, (60), 219–230. https://doi.org/10.22630/EIOGZ.2006.60.43
References

Geske R., Torous W. 1987. Volatility and Mispricing: Robust Variance Estimation and Black-Scholes Call Option Pricing, University of California.

Huber P.J. 1981. Robust statistic, Wiley, New York. (Crossref)

Hampel F.R., Ronchetti E.M., Rousseeuw P.J., Stahel W.A. 1986. Robust Statistic: The approach based on influence functions, Wiley, New York.

Jakubowski J., Palczewski A., Rutkowski M., Stettner Ł. 2003. Matematyka finansowa, WNT, Warszawa, str.199, 182-191.

Lax D.A. 1985. Robust estimators of scale: infinite-sample performance in long-tailed symmetric distributions, J. Am. Sta. Assoc., 80, str. 736-741. (Crossref)

Ostasiewicz W. 1998. Statystyczne metody analizy danych, Wydawnictwo AE im. Oscara Langego we Wrocławiu, str. 235-274.

Tchernitser A., Rubisov D.H. 2005. Robust estimation of historical volatility and correlation in risk management, University of Toronto, str. 1-10.

Zuo Y. 2005. Robust location and scatter estimators in multivariate analysis, Michigan State Univ. (Crossref)

Statistics

Downloads

Download data is not yet available.