Comparison of Tramo-Seats and Artficial Neural Networks for time series forecasting

Main Article Content

Tomasz Ząbkowski


Keywords : Tramo-Seats, artificial neural networks, forecasting, time series
Abstract
The paper presents the methods for time series forecasting. The case was to forecast an airtime usage of telecom customers. The metods chosen for comparison were ARIMA based Tramo-Seats and artificial neural networks. The results obtained in practical experiment suggest using Tramo-Seats for short time forecasting in this specific problem

Article Details

How to Cite
Ząbkowski, T. (2006). Comparison of Tramo-Seats and Artficial Neural Networks for time series forecasting. Zeszyty Naukowe SGGW - Ekonomika I Organizacja Gospodarki Żywnościowej, (60), 369–377. https://doi.org/10.22630/EIOGZ.2006.60.58
References

Dittmann P. (2002). Metody prognozowania sprzedaży w przedsiębiorstwie Wyd. AE, Wrocław

Gomez, V., Marvall, A. (2001). Seasonal Adjustment and Signal Extraction in Economic Time Series, Ch.8 in Pena D., Tiao G.C. and Tsay, R.S. (eds.) A Course in Time Series Analysis, New York: J. Wiley and Sons. (Crossref)

Gomez, V., Marvall, A. (1996). Programs TRAMO (Time series Regression with Arimanoise, Missing observations, and Outliers) and SEATS (Signal Extraction in Arima Time Series). Instructions for the User, Working Paper 9628, Banco de Espana.

Haykin S. (1994). Neural networks: a comprehensive foundation, Macmillan, New York

Najman Migdał K., Najman K. (2000). Zastosowanie sieci neuronowych na WGPW, Rynek Kapitałowy - Skuteczne Inwestowanie, Wydawnictwo Naukowe Uniwersytetu Szczecińskiego, tom II, str. 433-454,

Najman Migdał K., Najman K. (2000). Sieci neuronowe - wykorzystanie do prognozowania WIG, Profesjonalny Inwestor, nr 8, str. 10-18,

Marvall A. (2000). An application of TRAMO and SEATS, in Annali di Statistica, special issue on Seasonal Adjustment Procedures. Experiences and Perspectives, 20, p. 271-344.

Marvall A. (2002). An application of TRAMO-SEATS: Automatic Procedure and Sectoral Aggregation. The Japanese Foreign Trade Series, Working Paper 0207, Research Department, Banco de Espana.

Poggio, T.; Girosi, F. (1990). Networks for approximation and learning, Proceedings of the IEEE, Volume 78, Issue 9, Page(s): 148-149. (Crossref)

Statistics

Downloads

Download data is not yet available.